
TORIC, GLOBAL, AND GENERALIZED SYZ
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Abstract. In this talk I introduce some of my recent projects in SYZ mirror symmetry.
They include SYZ constructions for compact toric manifolds and local Calabi-Yau manifolds,
local conifold transitions, and a generalized version of SYZ which should naturally produce
homological mirror symmetry for a class of compact Calabi-Yau manifolds.

Strominger-Yau-Zaslow (SYZ) [46] proposed that mirror symmetry can be understood in
terms of duality of special Lagrangian torus fibrations. Namely, the mirror manifold can be
constructed by taking fiberwise torus dual of the original manifold, and Lagrangian branes
can be transformed to coherent sheaves on the mirror by a real version of Fourier-Mukai
transform. The SYZ program reveals the geometric origin of mirror symmetry.

The construction can be summarized into three steps:

(1) Construct a Lagrangian torus fibration. Topological and Lagrangian torus fibrations
on the Fermat quintic were constructed by Gross [24] and Castano-Bernard-Matessi
[3] respectively. Interesting local examples were studied by Gross [23].

(2) Take T-duality away from singular fibers to obtain the semi-flat mirror. Each non-
singular Lagrangian torus fiber has a dual, and the union of all such dual torus fibers
form a (typically non-compact) complex manifold known as the semi-flat mirror. This
construction was studied by [35, 36, 29].

(3) Carry out quantum corrections on the semi-flat mirror to obtain the true mirror.
Fiberwise torus duality away from singular fibers only gives the first-order approxi-
mation of the mirror. one needs to capture the additional information of holomorphic
discs emanated from singular fibers in order to reconstruct the genuine mirror. These
holomorphic discs interact with each other and scatter in a complicated way, whose
tropical version was studied by Kontsevich-Soibelman [30] and Gross-Siebert [25] (and
[26] gave an excellent survey on their work).

In general discriminant loci of a Lagrangian fibration are rather complicated, and quantum
corrections can only be computed order-by-order using the Gross-Siebert program. However,
how to carry out quantum corrections on Fourier-Mukai transform between Lagrangian branes
and coherent sheaves over the mirror is in general an open problem. Apparently the way from
SYZ to homological mirror symmetry is blocked by quantum corrections occurring up to infinite
order.

There are situations where quantum corrections are relatively simple and can be explicitly
handled by the theory of open Gromov-Witten invariants, namely toric Calabi-Yau manifolds
[8], compact toric orbifolds [6] and their conifold transitions [32]. These will be the topics in
the first and second parts of my talk. In these cases we show that the (inverse) mirror map has
an enumerative meaning in terms of open Gromov-Witten invariants [33, 34, 7, 11, 9, 10, 5],
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which are usually difficult to compute due to the lack of machinery. Our result computes all
the open Gromov-Witten invariants of Lagrangian torus fibers.

In order to understand the geometric origin of homological and closed-string mirror sym-
metry without invoking infinitely many quantum corrections, we introduced a generalized
version of SYZ mirror symmetry [13]. This will be the third part of my talk. The original
SYZ approach is based on T-duality in which tori play a central role. The generalized ver-
sion is based on (immersed) Lagrangian Floer theory rather than T-duality: one considers
general Lagrangians (with mild singularities) rather than restricting to tori. An A∞-functor
naturally comes out, which should lead to homological mirror symmetry when the chosen
Lagrangian split-generates (such as orbifold projective lines P1

a,b,c and Fermat hypersurfaces).
This explains the geometric origin of homological mirror symmetry.

1. Toric SYZ

1.1. Compact toric manifolds. SYZ for compact toric manifolds has been well-studied by
the works of [14, 12, 19, 20]. The construction in this case is rather simple and serves as an
excellent starting point:

(1) The god-given moment map over a toric manifold X serves as a Lagrangian torus
fibration for carrying out SYZ.

(2) All singular fibers are located at the boundary of the moment-map polytope. By
taking fiberwise dual one obtains (a domain of) (C×)n where n = dimX.

(3) Quantum corrections are captured by the weighted sum of open Gromov-Witten in-
variants with one boundary marked point. This gives a function W : (C×)n → C
known as the superpotential. 1

Defining open Gromov-Witten invariants takes tremendous effort, and we will not spend
our time there. Roughly speaking, open Gromov-Witten invariants in our context means the
counting of holomorphic discs bounded by a Lagrangian torus fiber passing through a generic
chosen point on the boundary, and the readers are referred to [19, 20, 17, 18] for details.

The two-sphere P1 with an area form ω is the best example to illustrate these concepts.
See Figure 1. One obtains (C×,W ) with

W = z +
q

z

where q = e−
∫
P1 ω. The left and right hemispheres are the only discs with non-trivial invari-

ants. They both have invariants 1; summing them weighted by their areas gives the above
superpotential with two terms.

While the superpotential for P1 may look rather boring, note that in general open Gromov-
Witten invariants are difficult to compute and the superpotential can have a complicated form.
We will go back to this point soon.

1More rigorously, one should use Novikov ring instead of complex numbers, especially when −KX is not
nef, because W may not converge over C. But for simplicity we pretend everything is over the complex field
C.
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moment map

z q/z

Figure 1. The two-sphere and its moment map.

1.2. Toric Calabi-Yau manifolds. Toric Calabi-Yaus serve as local examples of Calabi-Yau
manifolds. Here Calabi-Yau condition simply means that the canonical divisor KX is linearly
equivalent to 0. Examples include Cn and the total space of the canonical line bundle KPn−1

of Pn−1. (Note that the Fermat-type hypersurfaces in Pn−1 can be obtained as the critical
locus of a superpotential over KPn−1 .)

SYZ for toric Calabi-Yaus is different from SYZ for compact toric manifolds: we want
to construct a Calabi-Yau mirror instead of a Landau-Ginzburg mirror, because the toric
Landau-Ginzburg mirror ((C×)n,W ) does not capture enough information. All holomorphic
curves in a toric Calabi-Yau manifold are contained in the toric divisors by maximal principle.
These are the crucial elements that the mirror Calabi-Yau variety should capture, yet they
are hidden in the boundary strata of the moment map.

The idea is to deform the Lagrangian fibration initially given by the moment map such
that (part of) its discriminant locus moves to the interior. Such deformations were explicitly
constructed by Goldstein [22] and Gross [23] independently. Figure 3a gives an illustration
for the case of An-resolution, and the readers are referred to [8] for the details. The main
point is, once discriminant locus occurs in the interior, quantum corrections not only gives
rise to an additional superpotential, but also changes the structure of the mirror space (even
topologically).

In my joint work with Chan and Leung [8], we proposed a general procedure, which is
different from the Gross-Siebert program, to carry out SYZ construction with quantum cor-
rections. It used Fourier transform of open Gromov-Witten invariants while the Gross-Siebert
program used tropical geometry. Applying the construction to toric Calabi-Yau manifolds
gives:

Theorem 1.1 (Theorem 4.37 of [8]). Let (X,ω) be a toric Calabi-Yau n-fold. The SYZ
mirror FSYZ(X,ω) is (X̌, Ω̌), where

X̌ =

{
(u, v, z) ∈ C2 × (C×)n−1 : uv =

m∑
l=1

(1 + δl(q))Zl(q, z)

}
where q is the flat coordinate system on the Kähler moduli of X around the large volume
limit, Zl(q, z) are certain explicit monomials in (q, z) for l, . . . ,m and δl(q) for l = 1, . . . ,m
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are certain explicitly defined generating functions of open Gromov-Witten invariants of X; Ω̌
is a holomorphic volume form on X̌ obtained by taking Fourier transform of ω.

The SYZ mirror FSYZ(X,ω) is defined by a Laurent polynomial, which has the same form
as the Hori-Iqbal-Vafa mirror [27]. One crucial extra feature of the SYZ mirror compared with
the Hori-Iqbal-Vafa mirror is that, it is intrinsically expressed in terms of flat coordinates.

The key feature of this work is wall-crossing of open Gromov-Witten invariants. This type
of wall-crossing phenomenons was first observed by Auroux [2] in a non-toric Lagrangian
fibration on P2. Open Gromov-Witten invariants bounded by a Lagrangian fiber may undergo
sudden change when the fiber moves around. On the other hand, a point moving around
the mirror Calabi-Yau never undergoes any sudden change. We will encounter a similar
phenomenon in conifold transition presented later in this talk.

Our work [8] explicitly computed wall-crossing for all toric Calabi-Yau manifolds in a
uniform way. See Figure 3b. First consider discs emanated from below. A wall separates the
base into two chambers. The disc potential below the wall is simply a monomial ζ, while the
disc potential above the wall is ζg(z). Thus one obtains the function

u =

{
ζg(z) above the wall.
ζ below the wall.

for certain Laurent polynomial g. The same consideration for discs emanated from the above
gives the function

v =

{
ζ−1 above the wall.
ζ−1g(z) below the wall.

This explains why the mirror has the form

uv = g(z).

Figure 2. The An resolution and wall-crossing.

deform

(a) Deformation of Lagrangian fibration.
The left shows the moment map image. Af-
ter deformation singular fibers occur in the
interior as shown on the right. The dotted
line is the wall.

Wall

z

z g(z)

(b) Wall-crossing. There is only one disc be-
low the wall, giving rise to the disc poten-
tial ζ. Additional discs come up when cross-
ing the wall, giving rise to the disc potential
ζg(z).
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1.3. Open mirror theorem. The mirror map is a central object in mirror symmetry. It
provides a canonical local isomorphism between the Kähler moduli and the mirror complex
moduli near the large complex structure limit. The success of mirror symmetry on counting
rational curves in the quintic threefold essentially relies on identifying the mirror map. Mirror
map arises from the classical study of deformation of complex structures and Hodge structures
and can be computed explicitly by solving Picard-Fuchs equations.

Integrality of the coefficients of mirror maps has been studied [47, 41, 31]. Conjecturally
these integers should have enumerative meanings in terms of disc counting. In the tropical
setting of toric degenerations a conjecture of this type was made in the foundational work of
Gross-Siebert [25].

Let’s denote the (inverse) mirror map by

Fmirror :MA → M̌B

from the (complexified) Kähler moduli MA to the moduli space M̌B of complex structures
on the mirror. Now the SYZ construction also gives a map

FSYZ :MA → M̌B.

This map is defined canonically in terms of open Gromov-Witten invariants.

Using the SYZ map FSYZ, the open mirror symmetry conjecture can be formulated as the
following neat equality:

(1.1) Fmirror = FSYZ.

Since the right hand side of Equation (1.1) are expressed in terms of open Gromov-Witten
invariants, it gives an enumerative meaning of the mirror map Fmirror.

Furthermore, mirror map Fmirror is a classical object and typically can be computed by
solving Picard-Fuchs equations. Thus Equation 1.1 gives a computation of open Gromov-
Witten invariants. This is an open analogue of closed-string mirror symmetry which computes
Gromov-Witten invariants by geometry of the mirror side.

Equation 1.1 was recently completely proved in the semi-Fano toric case in my work jointly
with Chan, Leung and Tseng, and also for toric Calabi-Yaus in my joint work with Chan,
Cho and Tseng:

Definition 1.2. A Kähler manifold X is said to be semi-Fano if −KX is numerically effective.
It is said to be Calabi-Yau if −KX is linearly equivalent to 0.

Theorem 1.3 (Theorem 1.2 of [10] and Theorem 1.5 of [5]). For toric Calabi-Yau manifolds
and compact toric semi-Fano manifolds, we have

Fmirror = FSYZ.

Indeed the theorem can be stated in greater generality including orbifolds, but here we
restrict ourselves to manifolds for simplicity. Theorem 1.3 was first proved for An resolutions
[34] and compact toric semi-Fano surfaces [7]. Then in [11] we proved it for local Calabi-
Yau manifolds of the form KY , where Y is a toric Fano manifold. Assuming convergence
of the superpotential, [9] gave a proof for general compact toric semi-Fano manifolds. The
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convergence assumption was later removed [10]. It was completely proven for toric Calabi-Yau
manifolds in [5].

To demonstrate the use of Theorem 1.3, consider X = KP2 . Fmirror is basically given by
inverse of the power series

q̌ exp

(
∞∑
k=1

(−1)k

k

(3k)!

(k!)3
q̌k

)
.

Using Theorem 1.3, the open Gromov-Witten invariants can be extracted from the coefficients
of the inverse of the above power series. The first few terms are

n(l) = −2, n(2l) = 5, n(3l) = −32, n(4l) = 286, n(5l) = −3038, n(6l) = 35870, . . .

where l is the line class of P2.

We expect Equation (1.1) holds, as long as one can make a suitable sense of the SYZ
construction. In the third part of the talk I will introduce a generalized version of SYZ using
immersed Lagrangian Floer theory instead of T-duality.

1.4. Open-closed relations. The basic idea to prove Theorem 1.3 is to use open-closed
relations. The main difficulty for handling open Gromov-Witten invariants is the lack of
computational techniques due to the presence of boundary strata of the moduli. On the
other hand, computational techniques for closed invariants such as localization and mirror
principle [21, 37, 38, 39, 40] are well-developed. Thus we try to identify the open invariants
involved in FSYZ with certain closed invariants, and then use the mirror principle to compute
them. (Another approach using universal unfolding which is more analytic in nature was
used in [9]. I will skip it due to lack of time.)

The open-closed relation we start with was the following (see Figure 4 for an illustration
in the case X = F2 is the Hirzebruch surface):

Theorem 1.4 (Open-closed relation I [4, 34]). Let X be either a toric Calabi-Yau manifold,
or a compact semi-Fano toric surface. Let β ∈ π2(X,T ) be a stable disc class bounded by
a Lagrangian torus fiber T . Then there exists an explicit toric manifold X̃ of the same
dimension as X and a curve class β̄ ∈ H2(X̃) such that

nX1 (β) = 〈[pt]〉X̃0,1,β̄
where nX1 (β) denotes the open Gromov-Witten invariant associated to β.

D1

D2

D3

D4

D1

D2

D3

D4

Figure 4. Compactifying a disc (with sphere bubblings) in F2 to a rational curve.

The above theorem transforms open invariants of toric Calabi-Yau manifolds and compact
semi-Fano toric surface to closed invariants that we need to compute and thereby deduces
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Theorem 1.3 in these cases (together with the use of the mirror theorem [21, 39]). However it
poses topological restrictions on the manifold in order to ‘close up the discs’. To remove such
a restriction, we go up one more dimension to the Seidel space (see Figure 5 for an illustration
where X = P1):

Theorem 1.5 (Open-closed relation II [10]). Let X be a compact semi-Fano toric manifold,
Dl be a toric prime divisor and β ∈ π2(X) be a stable disc class bounded by a Lagrangian

torus fiber T . Then there exists an explicit Seidel space E associated to X and β̃ ∈ H2(E)
such that

(1.2) nX1,1(β;Dl) = 〈Dl, [pt]E〉E0,2,β̃
where nX1,1(β;Dl) denotes the open Gromov-Witten invariant relative to Dl associated to β.

Figure 5. Pushing a disc to the associated Seidel space and compactify it to
a sphere. The left hand side shows a disc in X. The right hand side is the
associated Seidel space and rational curve.

Note that the Seidel space might not be semi-Fano, even when X itself is semi-Fano. Thus
the computation of closed Gromov-Witten invariants of E is more complicated than one might
imagine, which involves the use of Seidel representations. The readers are referred to [10] for
details.

2. Global SYZ

We have mainly focused around a large volume limit. On the other hand, there are
other interesting limit points in the global Kähler moduli. Topologies of Kähler manifolds
parametrized by the Kähler moduli undergo non-trivial changes passing from one limit point
to the other. An important class is given by conifold transitions: Figure 6 shows a typical
local picture of a conifold transition.

It is expected that the picture for the B-side is much simpler and more classical. namely,
complex manifolds parametrized by the complex moduli around different limit points are
simply related by analytic continuations. There are monodromies around the limit points,
but the topology never undergoes sudden change.

Remark 2.1. Indeed we have already discussed a phenomenon having this sort of flavor
over the open moduli, namely, wall-crossing of open Gromov-Witten invariants of Lagrangian
torus fibers. There is a chamber structure on the base of the Lagrangian fibration due to
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S2

S3

S3S2

conifold singularity

resolution smoothing

O(-1) + O(-1) T*S3

conifold transition

Figure 6. Local picture of a conifold transition. The picture on the left shows
the total space of the bundle OP1(−1)⊕OP1(−1) over P1 = S2.

non-trivial change of open Gromov-Witten invariants across the wall, but the SYZ mirror
complex manifold is smooth and does not carry any chamber structure.

There are many existing literatures on wall-crossing (over closed moduli) in the A-side,
including wall-crossing of Donaldson-Thomas invariants, crepant resolution conjecture and
Landau-Ginzburg correspondence. Here I would like to talk about my work [32] on SYZ
under conifold transitions of toric Calabi-Yau manifolds. While there are topological changes
across a transition, we will see that their SYZ mirrors (as complex manifolds) are related by
analytic continuations.

2.1. Conifold transitions of toric Calabi-Yau. Conifold transitions of toric Calabi-Yaus
can be described by beautiful combinatorics. Let P be a lattice polytope. Placing P to
level one and taking cone gives the fan of a toric Gorenstein singularity X. Triangulations
of P give (partial) resolutions Y of X. On the other side, due to Altmann [1] Minkowski
decompositions of P give (partial) smoothings Xt of X. Then Xt is a conifold transition of
Y . See Figure 7 for an example of such a construction.

+

X Y Xtresolution smoothing 

conifold transition

Figure 7. An example of conifold transition of local Calabi-Yau manifolds.
Triangulation of the hexagon shown on the left corresponds to the total space
of canonical line bundle of the del Pezzo surface dP6. (One of) its conifold
transition is shown by the figure on the right.
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2.2. Lagrangian fibrations. Recall that the first step of SYZ is constructing Lagrangian
fibrations. On smoothing of a toric Gorenstein singularity Lagrangian fibrations were con-
structed by Gross [23]. The construction is similar to that for toric Calabi-Yau manifolds
using symplectic reductions.

The base of the Lagrangian fibration is the upper half space. The discriminant loci are
topologically duals of the polygons involved in the Minkowski decomposition, and each of
them is contained in a hyperplane. See Figure 8. The dotted lines show the discriminant loci.
One sees that Lagrangian fibration over the smoothing Xt is obtained by suitably pulling
apart the discriminant locus of Lagrangian fibration over the singular variety X.

b0

Xt

smoothing

X

Figure 8. Wall-crossing of open Gromov-Witten invariants in a conifold tran-
sition of KdP6 .

2.3. The SYZ mirrors of smoothings of toric Gorenstein singularities. As in the case
of toric Calabi-Yaus, the key phenomenon for quantum corrections is wall-crossing of open
Gromov-Witten invariants. As we have discussed, for a toric Calabi-Yau manifold there is a
hyperplane (called the wall) in the base, and across the wall open Gromov-Witten invariants
jump due to the interaction with holomorphic discs bounded by fibers over the wall.

For its conifold transition, I proved that it has several parallel walls, which are the hyper-
planes containing the discriminant loci [32]. See Figure 8 for an illustration. In the lowest
chamber there is only one holomorphic disc with non-trivial invariant; There are holomor-
phic discs (of Maslov index zero) bounded by fibers over the wall; when crossing each of
the walls, these holomorphic discs interact with discs below the wall and then produce more
holomorphic discs above the wall. By analyzing the open moduli and computing the open
Gromov-Witten invariants in each chamber, one obtains the following expression for the SYZ
mirror:

Theorem 2.2 (Theorem 1.1 of [32]). For a (total) smoothing of a toric Gorenstein singularity
coming from a Minkowski decomposition of the corresponding polytope, its SYZ mirror is

(2.1) uv =

p∏
i=0

(
1 +

∑
l=1,...,ki

zu
i
l

)
where uil are vertices of the simplices appearing in the Minkowski decomposition.
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Remark 2.3. Note that the smoothings Xt are no longer toric. Open Gromov-Witten invari-
ants for non-toric cases are usually difficult to compute and only known for certain isolated
cases (such as the real Lagrangian in the quintic [42]). For this class of non-toric manifolds
all the relevant open Gromov-Witten invariants are computed explicitly.

The right hand side of Equation (2.1) gives a factorization of a polynomial whose Newton
polytope is P , which is the polytope that we start with to construct the conifold transition.
Thus SYZ mirror symmetry realizes the magical duality between decomposition of polytopes
and factorization of polynomials. The following diagram summarizes the dualities that we
have and their relations:

Polytope decompositions Polynomial factorizations

Smoothings of toric Gorenstein singularity

Newton

Altmann SYZ

2.4. SYZ of conifold transitions of local Calabi-Yaus. Theorem 2.2 gives an explicit
expressions for SYZ mirrors of conifold transitions of toric Calabi-Yau manifolds. On the other
hand, the SYZ mirrors of toric Calabi-Yau manifolds can be explicitly written down in terms
of the mirror map due to the validity of Equation (1.1). By simple algebraic manipulations
the following theorem on the behavior of SYZ mirrors under conifold transition was obtained:

Theorem 2.4 (Theorem 1.2 of [32]). Let Y be a toric Calabi-Yau manifold and Xt be a
conifold transition of Y . Then their SYZ mirrors X̌ and Y̌q are connected by an analytic
continuation: there exists an invertible change of coordinates q(q̌) and a specialization of
parameters q̌ = q̌ such that

X̌ = Y̌q(q̌)|q̌=q̌.

While the toric Calabi-Yau manifold Y and its conifold transition Xt is different even in
the topological level, their SYZ mirrors (and also their generating functions of open Gromov-
Witten invariants) belong to the same family of complex manifolds and they are related by
analytic continuations.

Remark 2.5. Similar story holds for SYZ mirror symmetry under crepant resolutions, see
[6, 5].

3. Generalized SYZ

We have mentioned in the very beginning of this lecture that apparently there is a gap
between SYZ and homological mirror symmetry: the order-by-order quantum corrections are
so complicated and they hinder our understanding on homological mirror symmetry from the
SYZ perspective.

It would be great if one has a mirror construction such that homological mirror symmetry
naturally arises. What follows is an introduction to my work [13] jointly with Cho and Hong
in this direction.
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3.1. The construction. The main idea is the following: instead of restricting to Lagrangian
torus fibrations in the original SYZ approach, we use a Lagrangian immersion L and its
deformation theory to construct a Landau-Ginzburg model W .

The three steps of doing SYZ mentioned in the beginning of this lecture are modified to
the following:

(1) Construct a suitable Lagrangian immersion L̄. This should be oriented and (relatively)
spin. For simplicity it is assumed to have transverse self-intersections. For the purpose
of mirror symmetry we may want to require L̄ split-generates the Fukaya category,
although we do not need such an assumption in the construction.

(2) We take a (weakly-unobstructed) deformation space V of L̄ as the semi-flat mirror.
Recall that for a torus T , the dual torus T ∗ is given by

T ∗ = {∇ : ∇ is a flat U(1) connection on T} = H1(T,R)/H1(T,Z)

which is the imaginary part of the space of complexified Lagrangian deformations of
T :

H1(T,R)⊕ i (H1(T,R)/H1(T,Z)).

Thus the deformation space of a Lagrangian immersion plays the role of the dual of a
Lagrangian torus. Note that deformations of an immersed Lagrangian not just include
the usual Lagrangian deformations but also smoothings at immersed points.

(3) The quantum corrections are given by countings of J-holomorphic polygons bounded
by L̄. The semi-flat mirror comes from deformations and only has information about
a neighborhood of L̄. Again one uses holomorphic discs to capture information of
the ambient space X. They form a generating function W . Then (V,W ) forms a
Landau-Ginzburg model, and we call this a generalized SYZ mirror.

One advantage of such a construction is that it avoids complicated scattering and gluing,
and so the Landau-Ginzburg model (V,W ) comes out in a direct and natural way. This also
matches the general philosophy that Landau-Ginzburg model is easier to work with than
Calabi-Yau model (and it is an important topic to study the correspondence between the
two).

The best example to illustrate the construction is the two-dimensional pair-of-pants X =
P1 − {p1, p2, p3}. Seidel [43] introduced a specific Lagrangian immersion L ⊂ X shown in
Figure 9 to prove homological mirror symmetry for genus-two curves (which indeed works
for all genus shown by Efimov [16]). Later Sheridan [45, 44] generalized the construction to
higher dimensions and proved homological mirror symmetry for Fermat-type hypersurfaces.

L has three immersed points, and they give three independent directions of (weakly) unob-
structed deformations labelled by x, y, z. The only (holomorphic) polygon passing through a
generic point of L with x, y, z’s as vertices and having Maslov-index two is the triangle shown
in Figure 9, which corresponds to the monomial xyz. Thus the generalized SYZ mirror of
the pair of pants is W : C3 → C given by

W = xyz.

We can also use the Seidel Lagrangian L to construct the generalized SYZ mirror (C3,W ) of
the orbifold projective line P1

a,b,c (a, b, c ≥ 1), which is an orbifold compactification of the pair
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Figure 9. The Seidel Lagrangian. Two pictures show the same Lagrangian
immersion from different viewpoints. The three dots on the equator are punc-
tured when X is a pair-of-pants, or they are orbifold points when X is an
orbifold projective line. The shaded triangle on the right contributes to the
term xyz of the mirror superpotential.

of pants. One important thing is, the three independent directions of deformations labelled
by x, y, z are weakly unobstructed, due to cancellations between holomorphic polygons and
its reflection about the equator. Then our construction gives the generalized SYZ mirror of
P1
a,b,c, whose leading terms are

xa + yb + zc + σ(q)xyz.

Notice that P1
a,b,c can be written as a G-quotient of a Riemann surface Σ. Then the

generalized SYZ mirror of the Riemann surface Σ is also given by the same superpotential
W , but over the quotient C3/Ĝ where Ĝ is the group of characters of G (which is just
isomorphic to G itself because G is Abelian). When 1/a+ 1/b+ 1/c ≥ 1, which corresponds
to the case that Σ has genus less than or equal to one, the superpotential W has finitely many
terms; when 1/a + 1/b + 1/c < 1, which corresponds to the case that Σ has genus greater
than one, it has infinitely many terms. This gives the generalized SYZ mirror of a Riemann
surface Σ.

One can also run the above procedures for (quotients of) the Fermat-type hypersurfaces

X̃ =
{

[z0 : . . . : zn+1] ∈ Pn+1 : zn+2
0 + . . .+ zn+2

n+1 = 0
}

using the Lagrangian immersion constructed by Sheridan [45]. There are n degree-one in-
dependent deformation directions labelled by x1, . . . , xn. Assuming that they are weakly
unobstructed, we obtain a generalized SYZ mirror (Cn+2/Zn+2,Wn) of Fermat-type hyper-
surfaces where Wn has leading terms

n∑
i=1

xni + σ(q)x1 . . . xn.

3.2. Open mirror symmetry. We have discussed an enumerative meaning of mirror map
in the toric case in part I. Now let’s consider the compact Calabi-Yau case. Presumably this
is much more difficult. Since we have developed generalized SYZ, which also gives a map from
the Kähler moduli of X to the complex moduli of the Landau-Ginzburg model W , Equation
(1.1) makes sense. Thus we obtain a formulation of open mirror symmetry in this way.
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We can actually prove it for elliptic curves:

Theorem 3.1 (Theorem 1.4 of [13]). The mirror map equals to the generalized SYZ map
for an elliptic curve E (or more precisely its quotient E/Z3 = P1

3,3,3 where E has a complex
multiplication by cube root of unity.)

Let me explain more on the geometric meaning of the above theorem. The Seidel La-
grangian (Figure 9) in E/Z3 lifted to E is a union of three circles, see Figure 10. The
generalized SYZ mirror is of the form

W = (x3 + y3 + z3)− ψ(q)

φ(q)
xyz

where φ(q) and ψ(q) are generating series counting triangles with vertices at x, x, x and at
x, y, z respectively, see Figure 10. These generating series can be computed explicitly (note
that their coefficients have signs which require careful treatments).

Lagrangian immersion

xyz

x3

Figure 10. Polygon countings in the elliptic curve E. The parallelograms are
fundamental domains of the elliptic curve E. The dotted lines show the three
circles which are lifts of the Seidel Lagrangian in E/Z3.

On the other side, let πA(q̌) and πB(q̌) be the periods of E which satisfy the Picard-Fuchs
equation

u′′(q̌) +
3q̌2

q̌3 + 27
u′(q̌) +

q̌

q̌3 + 27
u(q̌) = 0.

The inverse series of

q(q̌) = πB(q̌)/πA(q̌)

is what we refer as the mirror map, and it can be explicitly written as q̌(q) = −3a(q), where

a(q) = 1 +
1

3

(
η(q)

η(q9)

)3

= 1 +
1

3
q−1

( ∏∞
k=1(1− qk)∏∞
k=1(1− q9k)

)3

.

We can verify that q̌(q) equals to ψ(q)
φ(q)

. Thus the mirror map has an enumerative meaning of

counting triangles. Note that the η-function also has rich number-theoretical meanings.

In [13] we conjecture that Equality (1.1) between mirror map and generalized SYZ map
continues to hold for Fermat hypersurfaces in all dimensions, and this would give an enumer-
ative meaning of mirror maps of Fermat hypersurfaces.
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3.3. Localized mirror functor. Homological mirror symmetry proposed by Kontsevich
[28] states that Lagrangian submanifolds correspond to matrix factorizations in the Landau-
Ginzburg mirror. Currently the main approach to prove homological mirror symmetry is to
compare generators and their relations (hom spaces) on both sides and show that they are
(quasi-)isomorphic. This does not explain why homological mirror symmetry works.

Our generalized version of SYZ construction naturally gives an A∞-functor LML from the
Fukaya category of X to the category of matrix factorization of W and hence explains the
geometric origin of homological mirror symmetry:

Theorem 3.2 (Theorem 1.1 of [13]). We have an A∞-functor

LML : Fuk λ(X)→MF(W − λ).

Here, Fuk λ(X) is the Fukaya category of X (as an A∞-category) whose objects are weakly
unobstructed Lagrangians with potential value λ, andMF(W−λ) is the dg category of matrix
factorizations of W − λ.

The key is the A∞ relation for Lagrangian Floer theory of the pair of Lagrangians L and
L′:

(3.1) (mL,L′

1 )2 = W (b)− λ

where λ is the disc potential of L′, and mL,L′

1 is an A∞ operator defined by counting holo-
morphic strips bounded by L and L′. This equality follows from the compactification of
moduli space of strips of Maslov index two, which may degenerate into either broken strip
(contributing to m2

1), or a constant strip with a disc bubble. Then a matrix factorization δ

of W can be defined using mL,L′

1 , which satisfies

(3.2) δ2 = W − λ.

We prove that the association of the matrix factorization δ to L′ can be extended to an
A∞-functor from the Fukaya A∞-category of unobstructed Lagrangians to the dg category of
matrix factorizations of W . The proof employs the A∞ equations of the Fukaya category, and
is similar to the statement that the Hom functor in Yoneda embedding is an A∞-functor.

We prove our functor is an equivalence for the orbifold projective line X = P1
a,b,c. Namely,

Theorem 3.3 (Theorem 1.3 of [13]). Let X = P1
a,b,c and W be its generalized SYZ mirror.

The A∞-functor LML in Theorem 3.2 derives an equivalence of triangulated categories

Dπ(Fuk(P1
a,b,c))

∼= Dπ(MF(W )).

Indeed LML(L) can be written (by some non-trivial change of coordinates) in the following
simple form:

(3.3)(∧∗

new
〈X, Y, Z〉, xX ∧new (·) + yY ∧new (·) + zZ ∧new (·) + wx ι

new
X + wy ι

new
Y + wz ι

new
Z

)
,

This type of matrix factorizations was proved to split-generate the derived category of
matrix factorizations by Dyckerhoff [15].
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